d"absorption - vertaling naar frans
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

d"absorption - vertaling naar frans

THEOREM
Absorption identities; Absorption Identities; Absorption Law; Absorption laws; Absorption identity

d'absorption      
imbibitional, of drinking; of absorption; of reception

Definitie

Absorption
Absorption is investment and consumption purchases by households,businesses, and governments, both domestic and imported. When absorption exceeds production, the excess is the country's current account deficit.

Wikipedia

Absorption law

In algebra, the absorption law or absorption identity is an identity linking a pair of binary operations.

Two binary operations, ¤ and ⁂, are said to be connected by the absorption law if:

a ¤ (ab) = a ⁂ (a ¤ b) = a.

A set equipped with two commutative and associative binary operations {\displaystyle \scriptstyle \lor } ("join") and {\displaystyle \scriptstyle \land } ("meet") that are connected by the absorption law is called a lattice; in this case, both operations are necessarily idempotent.

Examples of lattices include Heyting algebras and Boolean algebras, in particular sets of sets with union and intersection operators, and ordered sets with min and max operations.

In classical logic, and in particular Boolean algebra, the operations OR and AND, which are also denoted by {\displaystyle \scriptstyle \lor } and {\displaystyle \scriptstyle \land } , satisfy the lattice axioms, including the absorption law. The same is true for intuitionistic logic.

The absorption law does not hold in many other algebraic structures, such as commutative rings, e.g. the field of real numbers, relevance logics, linear logics, and substructural logics. In the last case, there is no one-to-one correspondence between the free variables of the defining pair of identities.